
RESEARCH ARTICLE

Beyond body size—new traits for new heights

in trait-based modelling of predator-prey

dynamics

Kate L. WoottonID
1,2*, Alva Curtsdotter3,4, Tomas Jonsson1,5, H. T. Banks6,

Riccardo Bommarco1, Tomas Roslin1, Amanda N. Laubmeier7

1 Swedish University of Agricultural Sciences, Department of Ecology, Uppsala, Sweden, 2 BioFrontiers

Institute, University of Colorado, Boulder, Boulder, CO, United States of America, 3 Insect Ecology Lab,

Zoology, The University of New England, Armidale, NSW, Australia, 4 EkoMod SpA, Comuna de Concon,

Region de Valparaiso, Chile, 5 Ecological modelling group, University of Skövde, Skövde, Sweden, 6 Center for
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Abstract

Food webs map feeding interactions among species, providing a valuable tool for under-

standing and predicting community dynamics. Using species’ body sizes is a promising ave-

nue for parameterizing food-web models, but such approaches have not yet been able to

fully recover observed community dynamics. Such discrepancies suggest that traits other

than body size also play important roles. For example, differences in species’ use of micro-

habitat or non-consumptive effects of intraguild predators may affect dynamics in ways not

captured by body size. In Laubmeier et al. (2018), we developed a dynamic food-web model

incorporating microhabitat and non-consumptive predator effects in addition to body size,

and used simulations to suggest an optimal sampling design of a mesocosm experiment to

test the model. Here, we perform the mesocosm experiment to generate empirical time-

series of insect herbivore and predator abundance dynamics. We minimize least squares

error between the model and time-series to determine parameter values of four alternative

models, which differ in terms of including vs excluding microhabitat use and non-consump-

tive predator-predator effects. We use both statistical and expert-knowledge criteria to com-

pare the models and find including both microhabitat use and non-consumptive predator-

predator effects best explains observed aphid and predator population dynamics, followed

by the model including microhabitat alone. This ranking suggests that microhabitat plays a

larger role in driving population dynamics than non-consumptive predator-predator effects,

although both are clearly important. Our results illustrate the importance of additional traits

alongside body size in driving trophic interactions. They also point to the need to consider

trophic interactions and population dynamics in a wider community context, where non-tro-

phic impacts can dramatically modify the interplay between multiple predators and prey.

Overall, we demonstrate the potential for utilizing traits beyond body size to improve trait-

based models and the value of iterative cycling between theory, data and experiment to

hone current insights into how traits affect food-web dynamics.
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Introduction

Mapping feeding interactions among species in food webs is a crucial first step for understand-

ing how ecological communities function, for gauging the impacts of anthropogenic stress on

community structure and stability, and for evaluating how ecosystems might be managed to

conserve biodiversity and ecosystem functioning [1]. However, to achieve quantitative food-

web understanding and predictions, we need a second step of formulating mechanistic models

capable of replicating food-web abundance dynamics, and to develop feasible approaches to

parameterize such models (e.g. [2, 3]). Only by deriving robust parameter estimates are we

then prepared to predict dynamics beyond the range of the existing data, such as what happens

when a new species enters the system.

Unless generalities can be identified, parameterization of a food-web model would require

the strength of every trophic link to be independently estimated experimentally. Such work is

both laborious and often imprecise, even for the links within a subset of a food web [4]. Addi-

tionally, some elements, such as non-consumptive interactions among multiple predators,

cannot be understood solely from a pairwise predator-prey perspective because the presence

of a third species modifies the interaction [5]. Although dynamic food-webs can accurately

describe observed interactions, their complexity has made it unwieldy to map the abundance

dynamics of diverse predator-prey assemblages in nature. Recent developments in food-web

ecology are now offering a potential cure for this ‘plague of parameters’ [6] through trait-based

approaches [7, 8]. Although any traits can be used in this approach, allometric (body-size

based) approaches are the most common of these approaches and have been used on a wide

range of species and communities [3, 9–11]. Such models assume a general relationship

between organismal body size and metabolism [12, 13], and from this infer a relationship

between body size and trophic interaction strength [14]. In this way, rather than estimating all

parameters individually, parameters can be estimated from one easily measured trait: body

size. Allometric Trophic Network (ATN) models [3, 15, 16] have been formulated based on

this idea. Their results are promising, explaining a large portion of observed trophic interac-

tion strengths and patterns of abundance dynamics of interacting species [3, 10, 11, 17], as well

as replicating observed community patterns such as the mass-abundance relationship [6].

However, while body size and its effect on metabolism define, at a broad scale, how much a

predator needs to eat and the size of prey it can attack and consume, many other traits can

alter this relationship, leading to substantial variation unexplained by body size alone [3, 17–

19]. Thus, although promising, the general applicability of body-size based models and the

extent to which direct and especially indirect trophic interactions are determined by traits

other than body size, remains to be explored.

Among the more successful applications of body-size based models to empirical data,

Schneider et al. [3, 20] found a strong positive correlation between simulated and experimental

population interaction strengths, but that the simulations overestimated the impact of spiders

(who roam on the top of the litter layer) on centipedes and springtails (who predominantly

dwell between litter and soil). They suggest that differences in predators’ and prey’s microhabi-

tat use—their ‘habitat domain’ [21]—may explain the residual variation where their model did

not accurately capture the experimental data. Motivated by this, Jonsson et al. [17] combined

the microhabitat use of species with their body size to parameterize an extended ATN model,

thereby successfully predicting experimentally observed population-level interaction strengths

when a predator species was alone with its prey (i.e. in the absence of indirect effects from

other species). While these and other empirical and modeling studies have pointed to the

importance of predator and prey microhabitat use (e.g. [21–24]), Jonsson et al. [17] is, to our

knowledge, the only study to explicitly incorporate it into a dynamic model parameterized by
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experimental data. They also found that increasing trophic complexity weakened the ability of

their model to explain the data.

The trophic interaction modifications (or indirect trait-based effects) observed in treat-

ments with more than two species and pinpointed by Jonsson et al. [17] are often behaviour-

mediated effects on population-level interaction strengths, where changes in the behaviour of

a predator and/or its prey is induced by the presence of another species, thereby modifying the

per capita interaction strength between the predator and its prey [25]. Mechanisms include

avoidance of intraguild predation and interference among predator species as well as facilita-

tion [22, 26–29]. Such interactions are not described by the original ATN model, and so the

model poorly captures their population-level effects [5, 17]. Jonsson et al. [17]’s results, that

increasing trophic complexity weakened the ability of their model to explain the data, strongly

suggested that it is a lack of behavior-based non-consumptive interspecific interference effects

in the ATN model that is the main cause for its inability to accurately predict trophic interac-

tion strength in more complex webs. Hence, two promising model developments might

improve predictions: to consider the spatial niche of species and/or to account for non-con-

sumptive intra-guild interactions.

Here we report on the findings of an experiment designed and pre-registered, but not yet

run, in Laubmeier et al. [30]. Pre-registration occurs regularly in disciplines such as psychol-

ogy and neurology where the research question, hypotheses and experimental procedure are

developed and published a priori, to allow for feedback before the experiment begins and to

prevent post-hoc alterations [31–33]. In our case, we ran pre-experimental simulations to

ensure that our planned sampling design would be sufficient to obtain the data necessary to

test our model. To this end, in Laubmeier et al. [30], we extended the ATN model to include

new factors. We introduced a term for microhabitat use, where predators and prey will

encounter each other more frequently the more time they spend in the same area, thereby

showing a stronger interaction strength. In [30] we also included a term for non-consumptive

intra- and interspecific predator-predator effects, where avoidance of other predators due to

the fear of intraguild predation or interference by other predators decreases predation rate

(e.g. [26, 34, 35]). Finally, to establish whether the effects of microhabitat use and non-con-

sumptive predator-predator effects were sufficiently strong to be observed across a diverse

range of predators, we intentionally selected predators covering a range of guilds and feeding

modes. To accommodate effects of variation in feeding mode or other traits not included in

the model for different types of predators, we allowed the value of the optimal predator-prey

body-mass ratio to vary from predator to predator in the parameter estimation that followed.

In this respect our approach departs from other studies utilizing the ATN model, such as

Schneider et al. [3] and Jonsson et al. [17] where the optimal predator-prey body mass ratio

was fixed across predators.

The model

We model predator-prey population dynamics in a food web, assuming species’ interaction

strengths are determined by body size and microhabitat use. Stronger interactions occur when

prey are close to a predator’s optimal prey size, or when predator and prey overlap more in

their microhabitat use. To develop our model, we started with the Allometric Trophic Network

(ATN) model, which uses body sizes of predator and prey to dictate interaction strengths [3,

14, 15]. We then extended the ATN model to include microhabitat overlap and non-consump-

tive predator-predator interactions.

Our modified model was published in Laubmeier et al. [30]. Subsequent to publication, we

observed that our original formulation for similarity in microhabitat use (which was also used
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by Jonsson et al. [17]) did not always capture the amount of time that predator and prey were

in the same location, as assumed to translate into their likely frequency of interaction. We

have, therefore, modified the microhabitat overlap index to account for this. Below, the entire,

updated model is presented and described.

To account for differences in microhabitat use across species, we divide the mesocosm into

microhabitat zones, quantify the amount of predation that occurs in each microhabitat zone,

and sum across all zones. The amount of predation increases with the proportion of time spent

in the microhabitatm (pi, m). When pi, m is large, species i spends more time in microhabitat

m, and if pi, m and pj, m are both large, we expect species i and j to encounter one another more

often in microhabitatm. The encounter rate will also be affected by the size of microhabitatm;

a fixed number of individuals in a larger microhabitat means a lower density and we therefore

expect fewer encounters. To account for this, we divide pi,m�Ni�pj,m�Nj by the proportional

area (Am) of microhabitatm to get the adjusted encounter rate in microhabitatm. Here, we

measure pi, m empirically as the proportion of individuals of species i observed in microhabitat

m (i.e. pi,m�Ni), divided by the total number of individuals in the cage (Ni).
We also introduce a term that describes the decrease in predation by a predator due to non-

consumptive effects of other predators. This may include fear of predation, leading to

decreased foraging, or physical interference [26, 28]. We propose that the magnitude of this

effect depends on the likelihood of predator j being intraguild prey to predator l, and therefore

depends on the expected attack rate of l on j (ajl). Microhabitat overlap will also affect predator

encounters and should therefore affect the magnitude of non-consumptive effects (e.g. [22,

24]). We account for the effects of microhabitat overlap on non-consumptive predator-preda-

tor effects in the same way as described above for predator-prey interactions. In the functional

response for predator j in microhabitatm, we sum over the potential attack rates of all species l
on a single individual of species j to account for time spent avoiding or evading species l while

species j is attempting to capture its own prey. The importance of non-consumptive predator-

predator effects is described by the scaling constant t0, where a large value of t0 indicates a high

decrease in successful attacks due to the time spent dealing with or avoiding non-consumptive

effects decreasing the time available for searching or attacking. Non-consumptive effects from

a conspecific individual may not be distinguishable from non-consumptive effects from

another predator species, and so we remove the intraspecific competition term as used in

Schneider et al. [3] from this version of the ATN model and replace it by the more general

expression for non-consumptive effects from other predator individuals of any species.

In total, dynamics for the number of individuals Ni of species i are therefore given by:

dNi
dt

¼ riNi �
X

j

X

m

aij
Am
pi;mNipj;mNj

1þ
P

k

akj
Am
hkjpk;mNk þ t0

X

l

ajl
Am
pl;mNl

ð1Þ

where species i increases in proportion to its intrinsic growth rate ri (day−1) and decreases due

to predation. We assume the intrinsic growth rate (ri) for predators to be zero due to their

much longer generation time (a year) compared with the duration of our experiment (eight

days). The realized per capita attack rate of predator j on species i in microhabitatm (aij/Am)

increases with the intrinsic attack rate determined by the predator-prey body-mass ratio (aij,
see below) and decreases with the size of the microhabitat, (Am), because predator and prey

encounter each other less frequently in the larger area. Total predation in a microhabitat

increases as the proportion of prey species i (pi, m Ni) and predator species j (pj, m Nj), in micro-

habitatm increases, but decreases dependent on the time predator j spends handling prey of

the same or other species (hkj), or spends avoiding or interfering with other predators l.
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As in Schneider et al. [3], we assume that for species body massesWi andWj (mg, corre-

sponding to prey i and predator j), the allometric parameters (i.e. those dependent on body

mass) are given by:

aij ¼ a0W
1=4

i W1=4

j

Wj=Wi

Ropt;j
e1�

Wj=Wi
Ropt;j

 !�

hij ¼ h0W
1=4

i W � 1=4

j

ð2Þ

Allometric parameters assume that metabolism and movement speed scale with body mass

[12]. While there is some variation [36], quarter-power scaling, as we use here, is pervasive

across many biological rates and species [37]. This has allowed many models to utilize a simple

approximation (3/4 rule) of the power to avoid estimating additional parameters. The deriva-

tions of these functions are described in greater detail by Schneider et al. [3]. We note the

importance of scaling parameters a0, h0, and Ropt, j. a0 scales the frequency of attacks when spe-

cies encounter one another, with larger values of a0 indicating more frequent attacks. h0 scales

the time spent handling alternative prey items. Handling time results in attacks on an increas-

ingly low portion of the prey population as prey become more abundant; larger values of h0

indicate more time spent handling prey, which results in greater penalties to consumption

rates. Ropt, j indicates the optimal predator-prey body-mass ratio for a successful attack by

predator j, where Ropt, j = 1 indicates that predator j is most successful when attacking prey as

large as itself and Ropt, j� 1 or Ropt, j� 1 indicates that predator j is most successful when

attacking prey much smaller or larger than itself respectively. Parameter ϕ (ϕ> = 0) tunes the

width of this success curve, indicating the importance of body size in determining feeding

preferences. When ϕ = 0, attack rates are independent of prey size, while large values of ϕ
mean feeding rates are highest close to Ropt and decrease away from this value. In contrast to

Schneider et al. [3] and Jonsson et al. [17], we allow the value of Ropt to vary from predator to

predator. This is to account for differences in traits not accounted for in the model that may

affect predator foraging behavior. See S2 Table in S1 File for a summary of units for all

parameters.

To determine the importance of the terms we introduce—microhabitat overlap and non-

trophic predator-predator effects—we compare four variations of the model:

1. the full model (Eq 1, i.e. with t0 > 0 and including pi, m and Am)

2. an intermediate model with microhabitat use but without predator interference (setting t0
= 0)

3. an intermediate model with predator interference but without microhabitat use (removing

pi, m and Am)

4. a minimal model without microhabitat use or predator interference (setting pi, m and Am to

1 and setting t0 = 0)

We fit each model to the data separately and so obtained different values for the fitted

parameters for each model. The different parameters values affect (i) which prey a predator is

most likely to consume and (ii) to what extent. As such, the values that we estimate here for a0,

h0, Ropt etc. for our four model variants will, to some extent, reflect how each model empha-

sizes the importance of different factors for each interaction. a0 and h0 take the same value for

all predators (within a given model), while the realized attack rate aij and handling time hij for

each predator-prey pair is determined by body size of predator j and prey i (Eq 2). In contrast

to a0 and h0, we allow Ropt to vary from predator to predator. A predator with an Ropt value of
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1 will interact most strongly with prey of its own size, while a predator with an Ropt of 100 will

more effectively consume prey 100 times smaller than itself. Next, if a predator spends all its

time in a particular microhabitat, such as (in our case) on bean plants (pi, beans = 1) it will have

the strongest interaction with prey that also reside predominantly on beans, and have no inter-

action with prey that are never on beans. Crucially, when the model includes microhabitat use,

it is the combination of both Ropt and pi, m that dictates trophic interaction strength. For exam-

ple, consider prey x (size = 10 and px, beans = 1) and prey y (size = 1 and py, barley = 1) with pred-

ator i. If predator i (size = 100 and pi, beans = 1) only interacts with prey x, this is already

captured entirely by the microhabitat use terms since the predator spends all its time in the

same microhabitat zone as prey x and never overlaps with prey y. In a model accounting for

microhabitat use (as in models 1 and 2), Ropt, i, therefore, will likely have an estimated value

near 10, since predator i is ten times larger than prey x. If, however, we do not account for

microhabitat use (as in models 3 and 4), the model needs some other way to capture that pred-

ator i does not interact with prey y in order to optimize the fit to empirical data. In the parame-

ter estimation this could be achieved by a larger value of Ropt, i (moving its optimal prey size

further from prey y), or a higher value of ϕ (narrowing the effective feeding range), thus

absorbing differences based on which terms are present in the model and producing good

model fit without necessarily reflecting the ‘true value’ of a parameter and thus realism in the

interaction between predator i and prey y. To guard against this, we impose boundaries on the

values parameters can take, preventing the model from taking on unrealistic parameter values

in such cases.

We do not explicitly include non-consumptive mortality in this model. For the aphid (or

basal) prey, mortality not due to predation is included in the growth rate term ri, while for

predators the experiment is not long enough that we expect mortality other than that due to

intraguild predation. Furthermore, without single individual controls, it would be difficult to

separate “natural” mortality from that due to predation or cannibalism.

Methods

The mesocosm experiment

To empirically test and parameterize this model required a study system with rapid growth of

the prey population, a range of body sizes of both predators and prey, and distinct microhabi-

tat zones. With this in mind, and with the benefit of data from a previous experiment [17], we

assembled a six-species terrestrial arthropod community [30] (Fig 1) dependent on two species

of plants; barley (Hordeum vulgare) and fava beans (Vicia faba).

As primary consumers we chose one large (Acyrthosiphon pisum, 0.67mg) and one small

(Rhopalosiphum padi, 0.155mg) species, both aphids. Next, to explore the importance of body

mass and microhabitat use in trophic interactions, we chose four predators on these prey, dif-

fering in body size and/or microhabitat preference; one large and one small predominantly

foliage-dwelling predator (Coccinella septempunctata, 37mg, and Orius majusculus, 0.58mg),

and one large and one small predominantly ground dwelling predator (Pardosa spp., 18mg,

and Bembidion spp., 2.15mg, where spp. signals the potential inclusion of several congeneric

but morphologically indistinguishable species). Each mesocosm contained both barley (as a

host for R. padi) and fava beans (as a host for A. pisum), one or both aphid species, and zero,

one or two predator species. All combinations of predator and prey were replicated six times

in a fully factorial design (Fig 2). This resulted in 30 predator-prey combinations, plus three

control treatments with no predators. This resulted in a total of 198 mesocosms, which were

run in four batches. Treatments were spread such that each treatment occurred at least once
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and no more than twice in each batch. Each run lasted 8 days from when predators were

added, and mesocosms were replanted before each run.

Plants were sown in 60x40cm, 20cm deep, plastic containers, each with two rows of 10 fava

bean seedlings (20 in total per container) and three rows of 15 barley seedlings (45 in total). A

60cm high mesh cage, with one side resealable to allow aphid counting, was placed on top of

each container to prevent insects from entering or escaping the microcosm.

150 wingless adult aphids, taken from a colony maintained in the lab, were introduced per

microcosm on Petri dishes two days before the experiment began. One third of the mesocosms

(66 mesocosms) were inoculated with 150 R. padi (zero A. pisum), one third with 150 A.pisum
(zero R. padi), and the final third with 75 R. padi and 75 A. pisum. Predators were introduced

at the beginning of the experiment. The number of predators was determined using a

Fig 1. The food web including all possible interactions that we allowed in the model. Species are, from top left: lady beetle (Coccinella
septempunctata); wolf spiders (Pardosa spp.); minute pirate bug (Orius majusculus); bird cherry-oat aphid (Rhopalosiphum padi); pea aphid

(Acyrthosiphon pisum); and ground beetle (Bembidion spp). Arrows indicate potential feeding interactions which we then parameterize through least

squares minimization (Section 3.2). Arrows point from prey to predator. Double headed arrows indicate that species could potentially eat each other

and arrows beginning and ending with the same species indicate cannibalism. We removed all interactions to and from C. septempunctata except for C.
septempunctata preying on aphids andO. majusculus, and assumed that the aphids did not consume any predators. This arthropod community was

dependent on two species of plants; barley (Hordeum vulgare) and fava beans (Vicia faba).

https://doi.org/10.1371/journal.pone.0251896.g001
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combination of short term (8hr) feeding trials and pilot studies to reach a density where preda-

tors would impact the prey, but not eliminate them too quickly. Predator numbers in single-

species mesocosms were: C. septempunctata: 4 individuals; O. majusculus: 40 individuals; Par-
dosa: 20 individuals; Bembidion: 40 individuals. Mesocosms with two predators species con-

tained half the number of individuals of each predator species as single predator-species

mesocosms, i.e. mesocosms with both Pardosa and Bembidion together contained 10 Pardosa
individuals and 20 Bembidion individuals. This substitutive design was to avoid the effect of

doubling the density of predators. O. majusculus were ordered from Lindesro AB, while C. sep-
tempunctata, Pardosa and Bembidion individuals were collected from fields surrounding Upp-

sala, Sweden.

Frequency and timing of aphid counts were determined based on our pre-experimental

analyses [30], but by using in-cage rather than destructive sampling, we were able to increase

sampling slightly from the minimum determined in Laubmeier et al. [30]. Aphid populations

were counted on days 2, 4, 6 and 8. Treatments with C. septempunctata were also counted on

days 1 and 3, because we realized that C. septempunctata decimated aphid populations so rap-

idly that we would require more data points in order to obtain an estimate of their parameters.

Aphids were counted by opening the cage door and carefully counting the number of aphids

on each plant.

The proportion of time predators spent in each microhabitat, pj, m, was measured in single

predator mesocosms. While it is possible that predators will change their microhabitat use in

the presence of other predators, our intention here is to model interactions with relatively few

parameters, and in particular to make it possible to extend to new species without having to

measure parameters for each new species’ combination. We expect that predators will be most

likely to change their microhabitat use in response to the potential for intraguild predation,

the effect of which should therefore be absorbed by the parameter for non-trophic predator-

predator effects (t0). When measuring microhabitat use, the location of each predator was

marked on a mesocosm map before beginning to count aphids in these mesocosms. In these

counts, between 20% and 100% of initial predators were found. In 3/4 of cases over 50% were

Fig 2. An overview of the predator-prey combinations used in the experiment. Each combination was replicated six times. Figure replicated from

[30].

https://doi.org/10.1371/journal.pone.0251896.g002
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found. We then categorized these into four areas: walls/roof, ground, beans, and barley. Aphid

microhabitat use was measured by separating aphid counts into each of those categories, but

only recorded on days 2 and 6. While the absolute area of beans and barley changed through-

out the experiment, we estimated that, on average, the surface area of beans, of barley, and of

the ground were roughly equivalent, while the combined area of the walls and roof was six

times larger than each other microhabitat area (Fig 3).

Predators could only be reliably counted through destructive sampling of the mesocosms,

and were therefore only counted on the final day (day 8). After the aphid count, predators

were collected by a thorough examination of cage and plants, and sifting through the soil. An

additional predator search was repeated the next day to catch any missed in the initial search.

Over the duration of the experiment, we found that C. septempunctata could occasionally

escape through gaps in the mesh cages. We assume that any C. septempunctatamissing from

cages escaped in this manner, as other predators were never observed consuming C. septem-
punctata. C. septempunctata were more easily observed than other predators, so we could be

certain that we had counted all individuals present in the cage. Because this change in the

Fig 3. Microhabitat preferences as estimated from the proportion of time each species spent in each of the four microhabitat zones. The final

column shows the relative size of each area in the experimental cages.

https://doi.org/10.1371/journal.pone.0251896.g003
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population is not described by our mathematical model, we added replacement individuals to

cages where C. septempunctata went missing and did not dynamically model the population.

Instead, we directly input C. septempunctata population densities into the model for other spe-

cies’ population dynamics. We fixed these densities at constant levels for the duration of the

experiment by taking the average value of all observed abundances in each cage. We used aver-

ages instead of time-series data due to the uncertainty associated with our observations; it was

impossible to know exactly when between observations the individuals went missing from the

mesocosm.

The ATN model describes species interaction strengths as a function of species traits (in

our case body size and microhabitat use). Because the presence or absence of a food-web link

is simply a binary interpretation of interaction strength, the ATN model also predicts the

binary food-web structure. However, if a feeding interaction is prohibited due to traits not

accounted for in the model, it cannot be expected to correctly predict the absence of such

links. As neither body size nor microhabitat could explain why the other predators did not

consume C. septempunctata (there was microhabitat overlap and predation of similar-sized

intraguild prey), we removed feeding interactions on C. septempunctata from other predators

from the network of potential interactions (Fig 1). Similarly, C. septempunctata did not con-

sume Bembidion or Pardosa, for reasons not necessarily explained by microhabitat use or body

size (most likely Bembidion’s hard cuticle (e.g. [18]) and Pardosa’s speed), so we removed

these interactions.

Model fitting

Using abundance data from our experiment, we parameterized four versions of the ATN model

(with versus without microhabitat use and predator interference, see Section 2 The model). We

use least squares minimization to search for parameters that minimize a “least squares” cost,

which describes the deviation of model predictions from empirical observations [38]. This is a

common and well-established approach to parameterizing biological models [39–41].

Although this method of parameterization permits weighted statistical models for error in

the data [38], we were unable to determine a meaningful weighting from the available data.

We therefore rely on an ordinary least squares cost, in which we assume that observational

error and process noise is normally distributed with unknown variance. Under this approach

sparse or noisy data can give rise to multiple or unreliable estimates [42, 43]. To guard against

this possibility, in [30] we a priori explored population dynamics to determine optimal and

minimal timing and frequency of experimental sampling. Population sensitivity to model

parameters impacts parameter estimates and is often used to assess identifiability and certainty

aftermodel fitting (for example, through use of the Fischer Information Matrix in [44] or

[45]). We therefore selected a sampling strategy to maximize model sensitivity (reducing the

potential for non-identifiable or uncertain parameters) and arrived at an optimized design for

generating empirical data to inform our candidate models [30].

We minimized the least squares cost across all possible parameterizations, using the numer-

ical optimization function fmincon and ODE solver ode45 in matlab version 9.8.0.1417392

(R2020a). We constrained the parameter space for the minimizing search according to the

range of observed parameters available in the literature (see Supplemental Methods, S1

Table in S1 File) and utilized the multistart function to guard against local minimization,

by numerically solving the minimization problem from many different starting points in the

available parameter space. In order to compare the importance of microhabitat use (pi, m) and

non-trophic predator-predator effects (t0), we repeated this fitting for each of the four models

(with versus without pi, m and t0).
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To fit the models, we first established a common baseline for aphid growth. Using the data

from predator-free control treatments, we estimated initial aphid abundances and the intrinsic

growth rate (ri) for A. pisum and R. padi. The intrinsic growth rate in the absence of predators

differed between the two aphid species, but we assumed that each aphid species’ growth rate

did not change across all aphid treatments (single-species or combined) and replicates. We

assumed a different initial abundance for each aphid species and aphid treatment (i.e. R. padi
alone versus in combination with A. pisum, and A. pisum alone versus in combination), but

used the same initial abundance across all replicates of the same aphid treatment type. Because

predators were added the day the experiment began (rather than two days earlier as aphids

were), we used the known predator abundances rather than estimating them. After estimating

aphid growth rates and initial abundances from predator-free mesocosms, we estimated the

remaining model parameters using data from predator-treated mesocosms. There were 10

predator treatments: each of the four predator species alone, plus each pairwise combination.

Each predator treatment was replicated with 18 aphid populations; 6 replicates each of A.
pisum and R. padi in isolation, as well as 6 replicates of A. pisum and R. padi in combination

with each other (Fig 2). We simultaneously estimated constants for allometric relationships

(a0, h0, Ropt, j, ϕ) and predator interference (t0) using all predator-treated data in aggregate,

while keeping aphid initial abundances and intrinsic growth rates (ri) fixed at previously esti-

mated values. Model estimation used a constrained optimization algorithm, described in detail

in the Supplementary Material. For the common values between all models (ri and initial

abundances), we placed bounds on the values that initial abundances could take using

observed initial abundances in the experiment and informed the bounds for ri from prior esti-

mates of aphid intrinsic growth rates. For each separate model, we placed bounds on the values

that the parameters could take based on values reported in the literature when possible (for h0

and Ropt, j), and repeated the estimation over multiple bounds to ensure a true minimization

for remaining parameters (for a0, t0, and ϕ) (see S1 Table in S1 File).

A fundamental goal of trait-based modelling is to yield flexible parameterizations for preda-

tor-prey interactions with fewer parameters to estimate. Scaling constants must therefore be

the same across all treatments and replicates, and variability across treatments must emerge

from differences in predator traits (and Ropt values which account for traits not explicitly

included in the model). By using the same parameterization and initial abundance across treat-

ments and replicates, and restricting the values that parameters can take, we limit the flexibility

of the model to fit to the data. We will not capture differences in population outcomes due to

external, potentially stochastic factors, such as variation in plant growth. Although the result-

ing fit to data may be worse, it allows us to discern which models, and therefore which parame-

ters, best explain the data. For the reduced models, we utilized the same values for ri and initial

abundances as in the full model and repeated the process for estimating remaining parameters.

To remove predator interference, we set t0 = 0 and did not estimate that parameter. To remove

microhabitat use, we set pi, m = 1 and Am = 1, removing the summation over allm.

Model evaluation and prediction

The above steps utilize the entire data set to derive parameter estimates. Each estimation prob-

lem yields a cost criterion (JLS) quantifying model fit, where a lower value of JLS indicates a

better model fit. To calculate relative model performance (i.e. accounting for models which

have more parameters), we also calculate the Akaike information criterion (AIC). We can fur-

ther evaluate the performance of each model according to the realism of estimated parameter

values and associated processes (e.g. feeding rates), compared to literature or supplemental

empirical testing. To summarize, we used a mix of statistical and expert-knowledge model
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performance criteria, specifically: (i) metrics of model fit (the JLS cost criterion and AIC), (ii)

visual fit of predicted vs observed aphid abundance, (iii) realism of parameter values, (iv) real-

ism of ecological processes, and (v) observed vs predicted final predator abundance.

A fundamental aim of trait-based dynamic modeling is to predict new species or scenarios.

To demonstrate how the models might compare in their predictions for a new prey species, we

used each model, with its resulting parameterization, to predict the population on days 2, 4, 6,

and 8 of a hypothetical, entirely ground-dwelling prey species weighing 1mg (slightly larger

than A. pisum) paired with each of our four predator species. Allometric parameters (aij, hij)
for the interaction between this new hypothetical prey species and each predator under the dif-

ferent model alternatives were obtained by applying the fitted values of scaling parameters

(Ropt, a0, h0) in Table 1 to Eq 1 (together with the ‘actual’ body size of the predator in question

and body size of the new hypothetical prey). This exercise demonstrates that i) the difference

between models may become most apparent outside the range of data they are fitted to, and ii)

that this is particularly important if we wish to use our models to predict new species’ dynam-

ics. Applying this approach to real new species would be one way to test which model is most

accurate. Nonetheless, it would call for a massive investment in terms of working hours, and is

therefore outside of the scope of the current study.

Results

Based on an integration of our assessment criteria of (i) metrics of model fit (the JLS cost crite-

rion and AIC), (ii) visual fit of predicted vs observed aphid abundance, (iii) realism of parame-

ter values, (iv) realism of ecological processes, and (v) observed vs predicted final predator

abundance, the full model (model 1) performed the best, followed by the model with micro-

habitat but not non-trophic predator effects (model 2), then the model with non-trophic pred-

ator effects but not microhabitat (model 3), and finally the model with neither non-trophic

predator effects nor microhabitat (model 4). Here we explain each criterion in turn and how

the models perform under them.

Table 1. Parameter values (±95% confidence intervals) and model fit (JLS and AIC) for models with and without microhabitat use and non-consumptive predator-

predator effects.

Model 1 2 3 4

rR.padi 0.3787 ± 0.135

rA.pisum 0.3454 ± 0.078

a0 9.56 ± 4.25 1.47 ± 0.48 25� ± 10.95 25� ± 25.68

h0 0.03 ± 0.01 0.01 ± 0.01 0.02 ± 0.00 0.42 ± 0.43

t0 10.8 ± 4.63 - 13.1 ± 5.72 -

ϕ 1.34 ± 0.01 1.35 ± 0.48 0.35 ± 0.00 0.05 ± 0.00

Ropt, P 50.4 ± 2.2 34.0 ± 3.4 100� ± 0.03 100� ± 1.7

Ropt, O 6.36 ± 0.19 106 ± 142 18.8 ± 0.1 175� ± 8

Ropt, C 250� ± 6.3 250� ± 63 250� ± 1 250� ± 4

Ropt, B 200� ± 9.2 200� ± 122 190.6 ± 0.8 200� ± 7

JLS 7.41e+08 7.71e+08 8.23e+08 1.02e+09

AIC 13,857 13,896 13,965 14,182

� Estimate at the bounds of the constrained minimization. See S2 Table in S1 File.

Model 1 = full model with both microhabitat and non-consumptive effects. Model 2 = only microhabitat. Model 3 = Only non-consumptive effects. Model 4 = minimal

model, neither microhabitat nor non-consumptive effects. rR.padi and rA.pisum refer to the intrinsic growth rates of the aphids R. padi and A.pisum respectively and are

estimated once and then have the same value across all models. a0, h0, t0 and ϕ refer to parameters in Eqs 1 and 2. Ropt, P, Ropt, O, Ropt, C and Ropt, B refer to the optimal

predator-prey body-size ratio for Pardosa spp., O. masculus, C. septempunctata, and Bembidion spp. respectively.

https://doi.org/10.1371/journal.pone.0251896.t001
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Based on the metrics of model fit (Table 1), the full model best explains the experimental

data (JLS = 7.41E+08, AIC = 13,857.00), closely followed by the model with microhabitat but

not non-trophic predator effects (JLS = 7.71E+08, AIC = 13,896.00). The model with only

non-trophic predator effects is the third best performer, while the model with neither non-tro-

phic predator effects nor microhabitat performed the worst. We see the largest confidence

intervals for the parameters in the model with microhabitat but not non-trophic predator

effects, especially for Ropt values (Table 1). This means that, while this model is one of the better

performing models according to JLS and AIC, we are much less confident in some of its

parameter estimates. The other models have confidence intervals roughly similar to each

other. However, for parameters at the bounds of the constrained optimization, such as Ropt, C,

a narrow confidence interval does not suggest that the estimated values are correct. Parameters

at the bounds of the optimization suggest a disconnect between the model and data, for exam-

ple a missing trait or an incorrect assumption about prey preferences.

Based on the visual fit of predicted vs observed aphid abundance, all models perform rel-

atively well (Fig 4). The full model is usually the best and never an outlier in poor performance.

In contrast, the minimal model is the only model to get the direction of population growth

wrong (predicting an increase of R. padi with C. septempunctata), underestimates the impact

of C. septempunctata on A. pisum and overestimates the effect of Bembidion on A. pisum. The

worst performance for the model with only microhabitat and the model with only non-trophic

predator effects is for O. majusculus on R. padi where they both underestimate the impact of

O. majusclulus. For Bembidion with R. padi, the model with only non-trophic predator effects

underestimates the effect of the predator while the model with only microhabitat overestimates

the effect of the predator. This suggests that for the O. majusculus-R.padi and Bembidion-R.
padi interactions in particular, both microhabitat and non-trophic predator effects are impor-

tant for the interaction.

With respect to the realism of parameter values, we do restrain the values to fall within

(generously set) realistic ranges. As a result, all estimated parameter values (Table 1) are in that

respect ‘realistic’. However, in models without microhabitat use, many parameters hit the

boundaries we set (indicated by � in Table 1). This suggests that if we did not set those bound-

aries, these parameters would have been driven towards unrealistic values for those models.

This is particularly true of Ropt (the optimal predator-prey body-size ratio) parameter values,

which hit, or nearly hit, their upper limit for most predators in models without microhabitat

use. However, in these models, ϕ is also very low which means that predators have similar attack

rates on prey of all sizes and body size is not important in driving interaction strengths. Preda-

tors can indeed have a very wide range of body sizes they can consume. But we know, at least

for some predators, that body size does play an important role and that there are limits (e.g. [3,

17, 46]). So it is likely that ϕ is smaller than it realistically should be in these models. The combi-

nation of Ropt values hitting their boundaries and low ϕ suggests that, without microhabitat in

the model, the model struggles to use body size to explain dynamics, at the expense of parame-

ter realism. With respect to particular Ropt values, we know from observation that both Pardosa
andOrius are cannibalistic and oftentimes consume prey or conspecifics of a size similar to

themselves. This means we would expect small Ropt values. In models with microhabitat use,

Pardosa does have relatively low Ropt values (50 and 34, meaning that Pardosa will preferentially

eat A. pisum (ratio = 26) andO. majusculus (ratio = 30)), while Orius has the lowest Ropt values

in models with non-trophic predator effects (6.36 and 18.8; the body-size ratio forO. majuscu-
lus with R. padi is 4) and a higher Ropt value in the model with only habitat use (106). In the

other models, Ropt for both predators hits, or nearly hits, its upper bound.

In terms of the realism of ecological processes, we can look at feeding rates (Fig 5) and

handling times (Table 2). Overall, models with microhabitat use show the highest
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‘microhabitat-preference free’ feeding rates on aphids (i.e. assuming each species uses each

microhabitat in proportion to its area rather than taking account of any microhabitat prefer-

ences of either prey and predator, shown by the blue and dark green curves in Fig 5). This is

because differences in microhabitat use usually decrease the realized feeding rate relative to the

‘microhabitat-preference free’ rate (see arrows showing the change when microhabitat use is

accounted for in Fig 5). Furthermore, intraguild effects among predators are important. We

can see from Fig 5 that the full model predicts the highest realized feeding rates of all models

on aphids (34–77 aphid individuals consumed per day per predator, depending on the preda-

tor) when no other predator individuals are present. If we account for the presence of other

predators and the decrease in foraging caused by interference and the fear of predation, these

rates can drop dramatically (to 2–34 aphids per predator per day, see S1 Fig). This drop in real-

ized feeding rate is especially true of Pardosa and O. majusculus, both whom are cannibalistic.

Fig 4. Model predictions of aphid population growth (lines) across time, compared to data of aphid counts per day (boxes) in single-aphid (rows)

single-predator (columns) treatments. Boxes show first and third quartiles and outlying points indicate data further from the hinge than 1.5 times the

interquartile range. Lines show predictions of the different models. The final row shows model predictions when including a hypothetical new prey

species that resides entirely on the ground and has a body size of 1mg. The closer a model trajectory is to the mean of the experimental data (horizontal

line within boxes) the better a particular model performs. A model underestimates (overestimates) the effect of a predator (columns) on an aphid prey

(rows) when its trajectory value for the prey is greater (smaller) than the experimentally observed data.

https://doi.org/10.1371/journal.pone.0251896.g004
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Importantly, the feeding rates in Fig 5 are the intrinsic rates of feeding when there is a fixed

population of 250 aphids and no other predator individuals present. As the aphid and predator

populations change, these feeding rates will change substantially (see S1 Fig to see how the

feeding rate changes in response to other predators and the resulting non-trophic predator

effects). This makes it somewhat difficult to pinpoint exactly how realistic the feeding rates are,

but all models predict rates roughly within those known from the literature [47–50]. Model

predicted handling times (Table 2) vary from 0.004 days (four and a half minutes) per prey per

Fig 5. Model predictions for an individual predator’s feeding rate (number of prey consumed per predator per day, y axis) on prey of different

body sizes (x axis). Curves show the “microhabitat-preference free” feeding rate, i.e. assuming all species use all microhabitats in proportion to their

area. Vertical arrows show the difference in feeding rate when accounting for observed microhabitat preferences of the predator with aphid prey (R.
padi, mass = 0.155mg and A.pisum, (mass = 0.67mg). The arrow tip shows the predicted feeding rate of the predator on a prey of that size when
accounting for microhabitat preferences. A longer vertical arrow therefore means that observed microhabitat preferences have a larger effect on feeding

rate. Line color corresponds to different models. Models with microhabitat use (blue and dark green lines) predict the highest “microhabitat-preference

free” feeding rates, but when actual microhabitat preferences are accounted for their feeding rates drop closer to that predicted by the other models. We

show the instantaneous feeding rate with a population of 250 aphids and in the absence of any other predator individuals (i.e. not accounting for non-

trophic predator effects. To see their effect, compare with S1 Fig). Observe that, for Bembidion, accounting for microhabitat use of R.padi does not

substantially change the predictions of models with microhabitat (i.e. the arrows sit on the curve). This is because the overlap of Bembidion with R.padi
works out to be almost the same as if they used all microhabitats in proportion to the size of the microhabitat. Note the varying scales of the y-axis.

https://doi.org/10.1371/journal.pone.0251896.g005
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predator for C. septempunctata and Pardosa consuming R. padi in the model without fear of

predation, to 0.44 days (11 hrs) per prey per predator for O. majusculus consuming A. pisum.

Based on supplementary experiments during the experiment, we observed that one hour (0.04

days) is approximately the longest that any predator (O. majusculus in particular) takes to con-

sume prey. This means that the handling times for the full model and the model without non-

trophic predator effects are the most realistic (Table 2). The minimal model predicts very long

handling times (0.11–0.44 days per prey per predator), which are inconsistent with direct

observations of feeding behaviour in the mesocosms and indicate the minimal model is

accounting for predator interference or habitat overlap through increased handling times.

When it comes to observed vs predicted final predator abundances (Fig 6), the full model

is usually the best. The full model does, however, overestimate the effect of Pardosa on Bembi-
dion (predicting no survivors, but actually�75% survived). The model with only habitat tends

to overestimate the consumptive effect of predators on other predators (intraguild predation),

predicting smaller final predator populations. This is especially true of final Bembidion and

Pardosa populations. The model with only non-consumptive predator effects tends to under-

estimate the effect of intraguild predation, especially on O. majusculus and Pardosa. The mini-

mal model also tends to overestimate the effect of intraguild predation, except on O.
majusculus. This model also has the biggest variation in predictions depending on aphid treat-

ment, which is due to the much higher handling times compared to the other models.

When it comes to making predictions outside the range of our data, we see that the models

predict very different impacts of each predator on a hypothetical, entirely ground-dwelling

prey species (i.e. very different from the foliage dwelling aphid prey) slightly larger than A.
pisum (Fig 4). Bembidion and Pardosa are predominantly ground-dwelling and would share

the same microhabitat as the hypothetical prey, so models which account for microhabitat pre-

dict that these predators will strongly drive down the population of this prey, while models

which do not include microhabitat predict much weaker effects. O. majusculus is predicted to

have the weakest effect where only non-trophic predator effects or microhabitat is accounted

for (because they will be busy avoiding each other or have little microhabitat overlap), and C.
septempunctata displays a range of effects.

Discussion

In Laubmeier et al. [30], we developed a dynamic food-web model, taking into account body

size, microhabitat use, and non-consumptive predator-predator effects, and then ran pre-

experimental simulations to determine the optimal experimental design. Here, we report the

Table 2. Handling times (hij, units = indi/day) for each predator with R. padi and A. pisum for each model.

Predator Prey Model 1 (h = 0.03) Model 2 (h = 0.02) Model 3 (h = 0.14) Model 4 (h = 0.42)

Bembidion R. padi 0.014 0.008 0.073 0.218

C. septempunctata 0.007 0.004 0.036 0.107

O. majusculus 0.019 0.011 0.101 0.302

Pardosa 0.008 0.005 0.043 0.128

Bembidion A.pisum 0.020 0.011 0.105 0.314

C. septempunctata 0.010 0.006 0.051 0.154

O. majusculus 0.028 0.016 0.145 0.436

Pardosa 0.012 0.007 0.062 0.185

Model 1 = full model with both microhabitat and non-consumptive effects. Model 2 = only microhabitat. Model 3 = only non-consumptive effects. Model 4 = minimal

model, neither microhabitat nor non-consumptive effects.

https://doi.org/10.1371/journal.pone.0251896.t002
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results of the experiment designed, but not run, in Laubmeier et al. [30]. We minimized the

error between time-series data from mesocosm experiments and a dynamic model, to deter-

mine underlying parameter values. We compared the fits of four alternative models (with ver-

sus without microhabitat use and non-consumptive predator-predator effects) to the observed

dynamics of two aphid species and their predators. We found that the full model, with both

microhabitat and non-consumptive predator-predator effects, performed the best across all

our criteria. By comparing the four models and where they do and do not perform well, we dis-

cuss what we can learn about the importance of different mechanisms, the ecological implica-

tions of these mechanisms, and what traits we may be missing from the model. We discuss

Fig 6. Experimental results (purple boxes) and model predictions for the proportion of each (focal) predator population surviving on the final

day of the experiment when combined with different intraguild predators (i.e. the top right panel shows the proportion of the Pardosa
population remaining at the end of the experiment when combined with Bembidion). The experimental data is shown as a box plot, showing the

25th, 50th, and 75th quartiles. Model predictions depend on the focal and intraguild predator, but also on the prey treatment. The three prey treatments

are shown as a point and error bars; where all three are stacked, prey treatment makes no difference to the predicted predator population. Note that C.
septempuntata was not modelled dynamically and did not predate on most other predators, so we exclude it from this plot.

https://doi.org/10.1371/journal.pone.0251896.g006
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how our models can be used to predict novel scenarios, and how this can provide a test of our

results. Finally, we discuss the value of iterative cycling between theory, data and experiment

to hone current insights into how traits affect food-web dynamics.

The order of model performance suggests that, while both microhabitat use and non-tro-

phic predator effects are important, microhabitat use is the more important of the two factors.

A closer look however, tells us that this is probably only true for larger predators that are less

affected by non-trophic predator interactions. Despite performing nearly as well as the full

model in terms of model fit, the model with only microhabitat use had the most uncertainty

associated with its estimates of Ropt, particularly for O. majusculus and Bembidion. For these

two predators, this model actually performed the worst of all models (Fig 4). O. majusculus
and Bembidion are the smallest and most abundant predators, and therefore probably the most

affected by non-trophic predator interactions, both from conspecifics and from larger preda-

tors. For intraguild prey, therefore, non-trophic predator effects likely play a similar, or poten-

tially even larger role than overlap in microhabitat use. These results support the findings of

Jonsson et al. [17], who found that added trophic complexity lead to weaker than expected tro-

phic interaction strengths.

Our results give quantitative support to research highlighting the importance of microhabi-

tat use as a factor driving community dynamics in arthropod communities (noted both in

mesocosms [3, 17, 21, 51, 52] and in the field [53]). However, not all research examining the

role of microhabitat use has found that it affects trophic interactions (e.g. [19]). This may be

due to differences in the microhabitat or species involved, but may also be due to the way in

which microhabitat overlap has been calculated. In many cases, very simple measures, such as

a binary classification of microhabitat, are used, which may mask important variation in the

way species use microhabitat. Here, we have introduced a quantitative metric that corrects pre-

vious metrics (e.g. [17, 30]) to accurately capture overlap in species’ use of microhabitat. We

have shown that a) incorporating habitat overlap and non-trophic predator effects into a

dynamic trophic interaction model does, in fact, improve our predictions of community

dynamics, as well as b) demonstrating how to measure and incorporate these factors into a

dynamic model of trophic interactions.

Habitat use and non-trophic predator interactions are both factors that can buffer the ‘nega-

tive effect’ of predation and competition and therefore enable coexistence [23, 52, 54]. However,

this also means that if these factors are not considered, any predictions we make may be inaccu-

rate. For example, when accounting for microhabitat use, Bembidion and C. septempunctata are

predicted to have roughly similar per capita feeding rates on R.padi (40–50 individuals per day).

However, despite having a much larger population size than C. septempunctata (40 vs 4 in sin-

gle-predator treatments), Bembidion has a much smaller effect on R.padi populations. This is

due to two factors: 1) the effect of non-trophic predator effects driving down the effective feed-

ing rate of Bembidion (see S1 Fig) and 2) that despite similar overall overlap, C. septempunctata
overlaps with all areas used by R.padi, whereas Bembidion overlaps with only 10% of the popula-

tion. This gives R.padi a refuge from Bembidion predation where it can survive and reproduce,

and prevents Bembidion from driving the population down as effectively as C. septempunctata.

This is important; it means that few predator individuals may continue to have the same impact

as many predator individuals. Similarly, in the presence of intraguild predators, intraguild prey

often change their foraging behaviour or spatial distribution [55, 56], decreasing the combined

effect of both predators [51, 55]. These mechanisms are particularly important when it comes

to pest control; adding more predators as biocontrol agents may have less effect than antici-

pated [51]. Together, including both microhabitat use and non-trophic predator interactions in

our model shows how predation effects are often not additive and can deviate from pairwise

predictions, with important consequences.
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By comparing parameter values across models, we can learn something not only about the

mechanisms each model is predicting but also about traits or mechanisms that may be missing

from our models. For example, Ropt values for C. septempunctata and Bembidion were consis-

tently much higher than for O. majusculus and Pardosa, meaning that the beetles had higher

attack rates on relatively smaller prey. This is likely because of differences in the way that bee-

tles forage as compared to Pardosa (a spider) and O. majusculus (a bug) [57, 58]. Bembidion
has higher final experimental population sizes than predicted by most models, suggesting Bem-
bidion likely has traits, such as a tough cuticle [18], which decrease mortality rate from other

predators but are not included in the model. These traits—foraging mode and defensive

traits—are therefore likely candidates to be integrated into further iterations of trait-based

models [8]. Adding the right traits may even remove the need for variable Ropt values, taking

us closer to a fully trait-based model. Of course, adding extra traits comes with extra work

associated with measuring them, and the optimal traits for a given study may vary (see [8] for

a framework for selecting traits).

By building our models on species’ traits, we can make predictions for novel scenarios. We

can incorporate species new to the community by measuring traits and then predicting what

effect the new species will have on community dynamics. While empirically implementing

such an experiment would have exceeded our current resources, we demonstrate how to do so

by predicting the population dynamics of a hypothetical new prey species with each predator

species in Fig 4. Applying the model to new predator and/or prey species is also a way to test

the generality of these models, by determining which model provides the most accurate pre-

diction. Most importantly, these predictions concern quantities which can explicitly be tested

in future experiments. Thus, the dynamics observed in our mesocosms provide the first step

for distinguishing between models. But, since we can i) make predictions using the models

and ii) explicitly test those predictions, the ultimate test of the validity of our models should be

based on further, iterating cycling between predictions and further experiments. A model built

on traits also allows us to predict how interactions and dynamics will respond to a change in

traits or the environment [8]. For example, if predator and prey change their microhabitat use

to overlap more or less (as may be caused, for example, by differences in landscape [35] or loss

of habitat e.g. [59]), then a model including microhabitat use will have vastly different predic-

tions from one not including microhabitat use. As we begin to build our library of trait-based

models and our understanding of where and how different traits affect different parts of the

predation process, we will increase our capacity to predict and manage the dynamics of eco-

logical communities in diverse and changing ecosystems [8].

We used least squares minimization [38, 60] to fit our models. This method, as many oth-

ers, is designed to find the parameter values that give the best fit possible to the data. This does

not, however, mean that those parameter values are true, and we must be careful not to con-

flate a well-fitting model with causal evidence for the importance of the modelled mechanism.

We tried to protect against such flawed inference in three ways here. First, we used data from a

previous experiment, to run pre-experimental simulations and determine the optimal sam-

pling method, ensuring we would have the greatest capacity to distinguish between models.

This is presented in [30]. Second, we compared the fit of four different models across a range

of criteria. This meant i) we could compare multiple models and not limit ourselves to a single

model and ii) that we evaluated the models not only on their fit to the data but also in their

realism. Third, we restricted the parameters to fall within realistic bounds as determined from

the literature (S1 Table in S1 File). This prevented the parameters from taking on unrealistic

values to fit the data in models that did not account for important mechanisms. In a prelimi-

nary analysis (not shown here) we found that when we did not impose realistic limits on the

parameter values all models had very similar predictions (i.e. JLS cost criterion and predictions

PLOS ONE Beyond body size—new traits for new heights in trait-based modelling of predator-prey dynamics

PLOS ONE | https://doi.org/10.1371/journal.pone.0251896 July 21, 2022 19 / 24

https://doi.org/10.1371/journal.pone.0251896


of aphid dynamics), but did so by having very unrealistic parameter values in many cases. We

do note that, here, fitted Ropt values for C. septempunctata and Bembidion consistently were at

or near their upper boundary (Table 1). These boundary values were determined from interac-

tions reported in the literature, which include the most common prey items for these predators

and should, therefore, include plausible Ropt values. We therefore suspect that the model hits

the upper boundary because there are traits not included in the model, which are also impor-

tant for the interactions. As an alternative, the ranges that we set for these Ropt values might

not have been wide enough, despite their foundation in the literature. The latter would how-

ever imply that, in the wild, these predators are basing much of their feeding on significantly

suboptimal prey (from a foraging success point of view). To resolve the issue, predator-specific

Ropt values would be determined by targeted experiments so that we could be confident that

these values are correct, and that if the model is hitting the boundaries it is because the model

needs to be adjusted. Thus, such iterative cycling between theory, existing information, experi-

ment, and data as used here, will be essential to further increase our understanding of how

traits affect food-web dynamics. While technically feasible, such work calls for substantial

investment of time, and therefore fell beyond the remits of the current study.

Conclusions

In this study, we tested an approach explicitly developed in Laubmeier et al. [30]. We devel-

oped the ATN model to include, in addition to body size, microhabitat overlap and non-tro-

phic predator-predator interactions. By comparing four models, we found that both overlap in

microhabitat use and non-trophic predator-predator interactions improved our ability to

explain aphid and predator dynamics. While body size has been successful in predicting struc-

ture and dynamics of many trophic networks, it does not explain everything, and our results

are a step toward creating trait-based models effective in a wider range of scenarios. Impor-

tantly, we demonstrated how we can leverage pre-existing data and the results of other studies

to most effectively develop these models.
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